We can represent the limit above by a combination of two limits for the rational functions involved.

limx2(1x24x24)=limx21x2limx24x24\lim_{x\to2} (\frac{1}{x - 2} - \frac{4}{x^2 - 4}) = \lim_{x\to2} \frac{1}{x - 2} - \lim_{x\to2} \frac{4}{x^2 - 4}

But from close inspection, we can infer that both diverge when x approaches 2, so we can combine them into a single rational function and find the limit.

limx2(1x24x24)\lim_{x\to2} (\frac{1}{x - 2} - \frac{4}{x^2 - 4})

limx2x2x24\lim_{x\to2} \frac{x - 2}{x^2 - 4}

limx2x2(x2)(x+2)\lim_{x\to2} \frac{x - 2}{(x - 2)(x + 2)}

limx21x+2=12+2=14\lim_{x\to2} \frac{1}{x + 2} = \frac{1}{2 + 2} = \frac{1}{4}